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ANALYSIS OF CARDIOVASCULAR INSTABILITY
BY A MATHEMATICAL MODEL OF BAROREFLEX CONTROL

E. Magosso, V. Biavati, and M. Ursino
Department of Electronics, Computer Science and Systems, University of Bologna, Bologna, Italy

Abstract- A mathematical model of the short-term arterial
pressure control is used to investigate the possible origin of
blood pressure waves (Mayer waves) and of heart rate
variability signals. The model includes a pulsating heart, the
pulmonary and systemic circulation, and various feedback
regulatory mechanisms. Feedback mechanisms are activated by
changes in systemic arterial pressure (arterial baroreflex) and in
right atrial pressure (cardiopulmonary baroreflex) and work on
systemic resistance, systemic venous unstressed volume, heart
contractility and heart period.  The latter involves a balance
between sympathetic and vagal activities (sympato-vagal
balance). A sensitivity analysis on the parameters of feedback
mechanisms revealed that a significant increase in the gains and
time delays (up to 9 s) of all the arterial baroreflex sympathetic
mechanisms is required to induce instability. In this condition,
systemic arterial pressure exhibits spontaneous oscillations with
a period of about 20 s, similar to Mayer waves. Moreover, an
increase in the gain and time delay (up to 3.5 s) of the arterial
baroreflex vagal mechanism causes the appearance of
unpredictable fluctuations in heart period, with spectral
components in the range 0.08-0.12 Hz. The cardiopulmonary
baroreflex plays a less important role in the genesis of the
aforementioned instability phenomena.
Keywords- Baroreflex, Mayer waves, variability signals

I. INTRODUCTION

As it is well known, systemic arterial pressure (SAP)
sometimes exhibits spontaneous self-sustained oscill ations,
with a period of about 20 s (i.e., much slower than the actual
respiratory cycle). These oscill ations were first recognized by
Sigmund Mayer in 1876 and subsequently observed by many
other authors in a variety of conditions, both in experimental
animals and humans (for a review see [1,2]).

In addition, heart rate (HR) is known to exhibit irregular
and sometimes unpredictable fluctuations. Frequency analysis
of the heart rate signal, in men, shows the existence of two
bands: a high frequency band (0.15-0.5 Hz) which is
especially correlated with respiratory and vagal activity, and
a low frequency band (0.06-0.15 Hz) which probably reflects
contributions from both sympathetic and parasympathetic
pathways.

Despite the great amount of clinical and experimental
studies on this subject appeared in the last decades, the origin
of these cardiovascular fluctuations and their possible
functional role are still a matter of debate among
physiologists. Mathematical models of cardiovascular
regulation can provide iTw
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quantitative terms. In recent years, we formulated a
mathematical model of the arterial baroreflex control in
pulsatile conditions, which is able to summarize many

experimental results on baroregulation quite well [3]. Aim of
the present work is to use a modified version of this model to
study conditions leading to instabilit y of the cardiovascular
regulation system, with the appearance of SAP and HR
fluctuations.

The paper is structured as follows. The main aspects of
the model are first prese
2.75988 0 Td(r)Tj (p)Tj
0.024.4 Tj
Q
q6.02334 Tc
2.75988Tj
0.03 Tc
4.979e es s y 5 6  T c 
 0  T w 
 8 . 4 5 9 8 2 9 7 7  0  T d ( l l 0 . 0 0 8 8 8  T c 
 5 . 0 T d ( a ) T j 
 - 0 . 0 2 5 8 8 8  T c 
 0  T w 
 9 . 9 4 . 5 7 9 7  0  T d ( a ) T j 
 - 0 g 1 0 . 0 7 9 6  0  T d ( e ) T j 
 - 0 . 0 0 8 8 8 1  0  T d ( m ) T j 
 0 . 0 3  0  T d ( h ) T j 0  7 9 8 8  0  T d ( s 8 8  T w 
 5 . 0 3 9 7 7  0  T d ( e  ) T j 
 - p 0 . 0 6 2 2 2  T c 
 0  T w 
 6 . 8 5 9 8  0  T d ( m ) 8 5  T w 
 2 . 7 5 9 8 8  0  T d ( n  ) T j 
 - 0 . 0 0 8 8 8  6 8 8 8  T c 
 3 . 3 5 9 8 2  0  T d ( e ) T j 
 0 . 0 0 
 4 . 4 3 9 8 8  0  T 4 5 . 0 0  T d ( d  ) T j 
 - 0 . 0 0 8 8 8  T c 
 0  T - 8 2  0  T d ( s ) T j 
 . 8 5 3 8 8 8  T c 
 3 . 4 4 3 8 8 T c 
 0  T w 
 9 . 0 8 . 5 7 9 7  0  T d ( a ) T j 
 - 0 n  n 2 . 7 5 9 8 8  0  T d ( r ) T s ) T j 
 . 
 - 0 9 9 5 0  T d ( a ) T j 
 0 . 0 3  T d ( h ) T j 0  3 7 7  0  T d ( l l ) T j 
 - . 0 5 7 7 8  T c 
 5 . 0 3 9 7 7  0  T d ( s ) T j 
 0 . 0 1 5  T c 
 3 . 8 3 9 8 8  0  T d ( . ) T j 
 E T  Q 
 Q 
 q 
 W 
 2 0  2 0  m 
 2 0  3 2 8 0  l 
 2 5 3 0  3 2 8 0  l 
 2 5 3 0  2 0  l 
 0  T w 
 6 . . 1 6 6 6 7  0  0  4 . 1 6 4 7 7 9 8  0  c m 
 0 . 0 0 2 2 2  T c 
 4 . 3 7 9 8 8  0  T d ( s q ) T j 
 - 0 . 0 3 6 6 6  T c 
 2 . 8 5 9 8  0  T d ( m ) 8 5  T w . 0 3  T c 
 2 . 7 5 9 8 8  0  T d ( u ) T j 
 - 0 . 0 0 8 8 8  T c 
 5 . 0 3 9 7 7  0  T d ( a ) T j 
 - 0 . 0 2 5 5 6  T c 
 4 . 4 3 9 8 8  0  T d ( t i ) T j 
 - 0 . 0 3  T c 
 5 . 5 7 0  T d ( e c ) . 5 1 9 8 8  0  T d ( o ) c 
 0  T - 8 2  0  T d ( s ) T j 
 . 2 T d ( a ) T j 
 - 0 . 0 2 5 5 6  T c 
 4 . 4 3 9 8 8  0  T d ( t i ) T j 
 - 0 c 
 0  T w 
 7 . 8 5 9 7 1  0  T d ( f ) . 0 0 8 8 8  T c 
 5 . 0 T d ( a ) T j 
 - 0 . 0 2 y T j 
 0 . 0 3  T c 
 4 . 5 . 6 4 5 7 9 7  0  T d ( a ) T j 
 - 0 2 2  T c 
 7 . 2 5 5 1 1 2  T d ( s ) T j 
 . 8 5 6 8  0  T d ( m ) S . 0 0 8 8 8  T c 
 5 . 0 3 9 7 7  0  T d ( a ) T u 
 - 0 . 0 2 5 5 6  T c 
 4 . 4 3 9 8 8  0  T d b 5  T w 
 2 . 7 5 9 8 8  0  . 5 1 9 8 8  0  T d ( o ) T j 
 0 6 8 8 8  T c 
 3 . 3 5 9 8 2  0  T d ( e ) T j 
 0 . 0 0 
 4 . 4  T c 
 4 . 3 7 9 8 8  0  T d ( s q 
 - 0 . 0 2 5 5 6  T c 
 4 . 4 3 9 8 8  0  T d u 2 . 7 5 9 8 8  0  T d ( r ) T . 0 3 9 7 7  0  T d ( a ) T j 
 0 . 0 3 q 6 . 0 2 3 3 4  T c 
 2 . 7 5 9 8 ) T j 
 - 0 . 0 0 8 8 8  T c 
 3 . 8 9 9 8 2  0  T d ( e 
 T j 
 0 . 0 3  T c 
 3 . 3 5 9 8 2  0  T d ( o ) T y T j 
 0 . 0 3  T c 
 4 . 5 . 6 4 5 7 9 7  0  T d ( a ) T j 
 - 0 , 1 0 . 0 7 9 6  0  T d ( e ) T j . 5 7  0  T d ( a ) . 8 5 6 8  0  T d ( m ) a 7 . 3 7 9 7 1  0  T d ( i ) T j 
 - 0 . 1 2 . 6 8  T c 
 3 . 9 2 s 2 . 7 5 9 8 8  0  T d ( r ) T 9 8 2  0  T d ( e ) T j 
 0 . 0 0 2 2 2  T c 
 4 . 3 4  T c 
 2 . 7 5 9 8 ) T j 
 - 
 2 . 7 5 9 8 8  0  . 5 1 9 8 8  0  T d ( o ) T j 
 0 6 8 8 8 7 5 9 8 8  0  T d ( s  ) T j 
 0 . 0 0 i t - 0 . 0 0 8 8 8  T c 
 7 8 . 2  T c 
 2 . 7 5 9 8 v T j 
 - 0 . 0 0 8 8 8  T c 
 3 . 8 9 9 8 2  0  T d ( e i t j 
 0 . 0 3  T c 
 3 . 3 5 9 7 4 . 5 7 9 7 5 9 8 2  0  T d ( o ) T y 1 0 . 0 7 9 6  0  T d ( e ) T j 
 - 0 . 0 0 3 . 1 9 9 d ( s ) T j 
 1 2  T w 2 2 2  T c 
 4 . 3 7 9 8 8  0  T d ( s ) T j 
 - 0 . 0 0 2 2 2  T c 
 4 . 4 3 9 8 8  0  T d ( s 8 5  T w . 0 3  T c 
 2 . 7 5 9 8 8  0  T d ( u ) T j 
 ) . 0 0 8 8 8  T c 
 5 . 0 T d ( a ) T j 
 - 0 . 0 2 y T j 
 0 . 0 3 7 5 9 8 8  0  T d 9  0  T d ( r ) T j 
 - 0 . 0 6 8 8 8 7 5 9 8 8  0  T d ( s  ) T j 
 0 . 0 0 i T j 
 - 
 2 . 7 5 9 8 8  0  . 5 7 0  T d ( e c ) T j 
 - 0 . 0 2 5 5 6  T c 
 8 . 8 7 9 7 7  0  T d ( e ) T j 
 0 . 0 1 2 . 1 0 0 2 j 
 0 . 0 0 i T j 
 - 
 2 . 7 5 9 8 8  0  T j 
 - 0 . 0 2 5 5 6  T c T j 
 - . 0 5 7 7 8  T c 
 5 . 0 3 9 7 7  0  T d ( s ) T j 
 0 . 0 1 5  T c 
 3 . 8 3 9 8 8  0  T d ( . ) T j 
 E T  Q 
 Q 
 q 
 W 
 2 0  2 0  m 
 2 0  3 2 8 0  l 
 2 5 3 0  3 2 8 0  l 
 2 5 3 0 8 8 8  T c 
 7 . . 1 6 6 6 7  0  0  4 . 1 6 3  0  2  0  c m a ) T j 
 0 . 0 0 2 2 2  T c 
 4 . 4 3 9 8 8  0  T d ( s ) 5 1 2 7 8  T w 
 2 . 7 5 9 8 8 T d ( l  ) T j 
 - 0 . 0 0 8 8 8  6  T w 
 3 . 8 9 9 8 0  4 9  ) T j 
 - 0 . 0 f . 0 0 8 8 8  T c 
 5 . 0 8  0  T d ( s  ) T j 
 0 . 0 2 3 
 4 . 4 3 9 8 8  0  T d 9  0  T d ( r ) T j 0 . 0 3  T c 
 0  T d ( h ) T j 8  0  T d ( s  ) T j 
 8 8  T w 
 5 . 0 3 9 7 7  0  T d ( e  ) T j 
 - 0 . 1 1 
 0 . 0 0 2 2 2  T c 
 4 . 6 7 2 5 d ( d  ) T j 
 - 0 . 0 0 8 8 8  d c 
 0  T - 8 2  0  T d ( s ) T j 
 9 T d ( a ) T j 
 - 0 . 0 2 5 5 6  T c . 6 7 2 5 d ( d  ) T  T d ( a ) T j 
 - 0 n  5 . 0 3 9 7 7  0  T d ( e ) T j 
 0 . 0 9 4  T c 
 1  B T 
 / R 6  1 0 . 0 2  T f 
 - 0 . 0 2 5 5 6  T c 
 1  0  0  6 
 0  T w 
 6 . 4 7 9 8 2  0  T d ( T ) T j 
 0 . 0 3  T c 
 6 . 0 5 9 8 8  0  T d ( r ) T j 
 - 0 . 8 . 3 3 T d ( s  ) T j 
 f 8  T w 
 5 . 0 3 9 7 7  0  T 9 8 2  0  T d ( p ) T j 
 0 . 0 2 0  0  6 
 0  T w 
 6



Report Documentation Page

Report Date 
25OCT2001

Report Type 
N/A

Dates Covered (from... to) 
- 

Title and Subtitle 
Analysis of Cardiovascular Instability by a Mathematical Model
of Baroreflex Control

Contract Number 

Grant Number 

Program Element Number 

Author(s) Project Number 

Task Number 

Work Unit Number 

Performing Organization Name(s) and Address(es) 
Department of Electronics, Computer Science and Systems,
University of Bologna, Bologna, Italy

Performing Organization Report Number 

Sponsoring/Monitoring Agency Name(s) and Address(es) 
US Army Research, Development & Standardization Group
(UK) PSC 802 Box 15 FPO AE 09499-1500

Sponsor/Monitor’s Acronym(s) 

Sponsor/Monitor’s Report Number(s) 

Distribution/Availability Statement 
Approved for public release, distribution unlimited

Supplementary Notes 
Papers from the 23rd Annual International Conference of the IEEE ENgineering in Medicine and Biology Society,
October 25-28, 2001, held in Istanbul, Turkey. See also ADM001351 for entire conference on cd-rom.

Abstract 

Subject Terms 

Report Classification 
unclassified

Classification of this page 
unclassified

Classification of Abstract 
unclassified 

Limitation of Abstract 
UU

Number of Pages 
4



of  42

pressure in all intrathoracic compartments) and for the
abdominal pressure Pabd  (which is the extravascular pressure
in the splanchnic circulation). The latter term has been
introduced to simulate the effect of diaphragm movements on
the abdominal veins [4]. By contrast, extravascular pressure
in the other compartments has been maintained constant and
equal to zero (which is the reference atmospheric pressure).
The expressions for the intrathoracic and abdominal pressures
during each respiratory cycle have been given in order to
approximately reproduce the patterns reported in Moreno et
al. [4]. The respiratory period is as long as 5 s. In order to
avoid the occurrence of a retrograde blood flow caused by
respiration, unidirectional valves have been included in the
thoracic and pulmonary venous pathways. With the previous
assumptions, respiratory fluctuations in the main
hemodynamic quantities (arterial blood pressure, venous
return, left and right stroke volume) can be reproduced fairly
well .

Description of the feedback regulatory mechanisms
incorporates two groups of pressure receptors (high-pressure
or arterial baroreceptors and low-pressure or
cardiopulmonary baroreceptors) and four effectors to fulfill
the regulatory actions. These are the systemic peripheral
resistance (both in the splanchnic and extrasplanchnic
vascular beds), the systemic venous unstressed volume (both
in the splanchnic and extrasplanchnic vascular beds), the

heart contractilit y (characterized by means of the end-systolic
elastance both in the right and left ventricle) and the heart
period.

The first three effectors are assumed to depend on the
activity of the sympathetic pathway only. Their response to
baroreceptor stimulation is described as in the block diagram
of Fig. 2. We can observe the presence of two different input
stimuli , coming from arterial baroreceptors and
cardiopulmonary baroreceptors, respectively. The first group
of receptors is sensitive to systemic arterial pressure, Psa,

whereas the right atrial pressure, Pra, affects the second

group of receptors.  The pieces of information coming from
the two groups of receptors are not simply summed up but,
after summation, are passed through a sigmoidal static
characteristic, with upper and lower saturation. The gains, Ga
and Gc, represent the maximal strength of the arterial and

cardiopulmonary baroreflex (i.e., the strength at the central
point of the sigmoidal relationship). Finally, the mechanism
dynamics include a pure delay, D, and a low-pass first order
filter with a time constant τ.

The control of heart period is different from the other ones
since, as it is well known, it involves a balance between the
sympathetic and vagal activities. Hence, we introduced the
presence of two different gains for the arterial and
cardiopulmonary reflexes and of two distinct dynamics, in

Fig. 1. Electric analog of the cardiovascular system. See text for the meaning of symbols.

Pth

Pth

PthPth

PthPth

Pth

Pabd

Pabd

Rpp

Rpv

Rpa

Lpa

Qpa

RrvRra

RlvRla

Cpp

Cpv

CrvCra

ClvCla

Qor

Qol

Cpa

Csa

Csv

Cev
Csp

Cep

Rsp

Rep

Lsa

Rsa

Rv

Rev Rsv

Ppa

Psa

Cv

Pth

Psp
Pep(=Psp)

Pev Psv

Proceedings – 23rd Annual Conference – IEEE/EMBS Oct.25-28,  2001,  Istanbul,  TURKEY 

 



of  43

order to separately mimic the activation of sympathetic and
vagal fibers, respectively.

A basal value to all parameters in feedback mechanism has
been given to simulate results of physiological experiments
(see [3] and [5]).

III. RESULTS

A first analysis was performed by modifying the gains and
time delays of the arterial baroreflex mechanisms involving
sympathetic fibers. To this end, we acted on the time delays,
Dθ, and arterial baroreflex gains, Gaθ, in Fig. 2. By contrast,

parameters characterizing the vagal control and the
cardiopulmonary baroreflex were maintained at their basal
value.  The analysis revealed that the stabilit y margin of the
control system is quite high. In particular, we noticed that
increasing the gain and time delay of a single mechanism
alone does not lead to oscill atory behavior, but only a
combination of parameter changes leads to instabilit y.
However, if the mechanism gains and time delays are all
significantly increased, one can observe the occurrence of
Mayer waves with a period of about 20 s (see Fig. 3). In the
exemplary case simulated in Fig. 3, oscill ations were
obtained by multiplying the gain of all mechanisms by a
factor 4.5, and increasing the time delays up to 9 s. By
contrast, changes in the gains of the cardiopulmonary
baroreflex have a negligible effect on system stabilit y.

A second sensitivity analysis was performed to unmask
the role of the vagal control on the genesis of unpredictable
fluctuations in heart period. To this end, we progressively
increased the gain of the arterial baroreflex vagal mechanism
and the corresponding time delay. Results show that, if the
time delay of the vagal mechanism is increased above 2 s, a
double period bifurcation occurs. A subsequent increase in
time delay (above 3 s) causes the appearance of unpredictable
heart period fluctuations. An example of the results obtained
is shown in Fig. 4. In these simulations we used a value for
the arterial baroreflex vagal gain a littl e higher than basal and
then we progressively increased the vagal time delay. All the
other parameters were unchanged. With a normal, or a littl e
increased time delay, the heart period signal exhibits just the
respiratory oscill ation, with a period as long as 5 s (Fig. 4
upper panels). If the time delay is increased above

approximately 2 s, the signal exhibits a double period
bifurcation (Fig. 4 middle panels). The oscill ation period
becomes as long as 10 s and a significant spectral component
appears at 0.1 Hz. If the time delay is further increased above
3s, we can observe irregular fluctuation in heart period (Fig. 4
lower panels), with a broad spectral component in the range
0.08-0.12 Hz.

IV. DISCUSSION

Aim of the present work was to investigate the role of the
baroreflex control system (both arterial and cardiopulmonary)
in the genesis of blood pressure waves and of heart rate
variabilit y signals. The results, acquired trough a sensitivity
analysis on feedback mechanism parameters, suggest that the
stabilit y margin of the baroreflex is quite high, at least in
physiological conditions. Nevertheless, the analysis also
revealed that the arterial baroreflex, especially thanks to its
sympathetic component, may become unstable if the gains
and time delays are increased compared with hypothetical
normal values. In these conditions, model predicts the
existence of Mayer waves with a period of about 20 s, i.e. the
same period reported in the physiological lit erature [2]. The
previous result agrees with the observation by Hatakeyama
[6]. This author observed that the baroreflex system, in dogs,
becomes unstable if a dead-time (about 3-6 s) is artificially
added to the feedback chain between the systemic blood
pressure and the intrasinus pressure.

A further interesting result provided by our analysis is that
the vagal component of the arterial baroreflex may induce
unpredictable fluctuations in heart-period, provided its time
delay is increased above 2-3 s. It is worth noting that the
spectral components of these fluctuations lie within the so-
called Low Frequency band (LF), where heart rate variabilit y
signals are frequently reported in the clinical lit erature [1].
Also in this case, however, the dead times necessary to
induce instabilit y phenomena are quite high, compared with
physiological levels, and seem expression of a pathological
behavior. Finally, we noticed that the cardiopulmonary
baroreflex does not contribute significantly to instabilit y. An
increase in its gains, in fact, either has littl e effect on the
stabilit y margin or, as in the case of venous unstressed
volume control, may even improve stabilit y.

G aθ
P s a

G cθ

D θ

- P sa n

P r a - P r a n

+

+

1
1 + τθ s

θ

Fig. 2. Block diagram describing action of a sympathetic mechanism which modifies the parameter θ (either peripheral resistance, venous unstressed volume
or heart contractilit y). Ga and Gc: arterial and cardiopulmonary baroreflex gains; D: time delay; τ: time constant of the first-order filter. The sigmoidal

relationship is increasing as to unstressed volume and decreasing as to resistance and heart contractili ty.
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V. CONCLUSION

In conclusion, the present study suggests that the arterial
baroreflex may be involved in the genesis of Mayer waves
(especially via its sympathetic branches) and in the genesis of
heart period variabilit y signals (especially through its vagal
component). The achievement of instabilit y conditions,
however, requires a pathological increase in the sympathetic
and vagal delays. It is probable that additional mechanisms
(such as the chemoreflex, the lung-stretch receptor reflex, a
central command from the neural system, etc.) might
contribute to reduce the stabilit y margin of the system, thus
making the occurrence of baroreflex instabilit y more
probable in physiological conditions.
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